
2009 © Dunelm Services Limited

Consultants in Applied Research & Development for
Information & Communications Technology

Service Oriented Architecture:
Preparing Your Business &

IT Products

Session 6: Core Technology

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

2 Digital 20/20

Publication Information

The publication history for this booklet is:

Version Date Summary of Amendments

A June, 2009 The first release of this booklet.

License
This material is made available under a Creative Commons
License. This License, termed ‘UK: England and Wales
Attribution version 2.0’, enables anyone to copy, distribute,
display and perform the work, and to make derivative works.
The only condition is that attribution credit must be made to
the original author; details for how this credit must be given
are available on the Dunelm web-site at www.dunelm.com/
projects and following the links for the Digital 20/20 project.
Further details on the Creative Commons License are at:
creativecommons.org/licenses/by/2.0/uk/

http://www.dunelm.com/projects
http://www.dunelm.com/projects

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

3Digital 20/20

Executive Summary

This is the sixth and final session in the series on Service-
oriented Architecture (SOA). Unlike the previous sessions,
this one is focused on the technology that is used to turn SOA
from a business tool into commercial advantage. A lot of the
discussion that follows concerns Web Services. Web Services
is one technology that can be used to realise SOA but it is
important to remember that, in principle, it is NOT the only
technology. However, Web Services is the only technology that
is currently available to realise SOA. As far as this discussion is
concerned, the newly touted Web-oriented Architecture is just a
flavour of Web Services.

Of all the material covered in the six sessions, it is the content
in this session which is most susceptible to change. Across
the World, there is a large amount of development effort in
making it easier to implement Web Services. There are a
lot of relevant standards being developed and in many cases
these are undergoing significant revision as we gain more
implementation experience. Likewise, the tool-sets that make it
possible to create a Web Service solution are also being changed
and improved. Therefore, it is important to spend some time
ensuring that any of the following recommendations still reflect
the agreed best practices.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

4 Digital 20/20

Table of Contents

Publication Information��2
Executive Summary��3
1.	 Introduction��5
2.	 Core Web Technologies��8
3.	 SOAP Messages��13
4.	 Web Service Description��16
5.	 WS-I Organisation��20
6.	 Deploying Web Services���24
7.	 WS-* Standards��27
8.	 Web Services Stack���30
9.	 APIs, Protocols & Interfaces��33
10.	 Interoperability & Innovation���38
11.	 Combining Services��40
12.	 Enterprise Service Bus��42
13.	 Over-the-Horizon��47
14.	 In Conclusion��50
Appendix A – Bibliography��53
Appendix B – Acronyms���55
Index���58

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

5Digital 20/20

1.	 Introduction

Throughout the previous five sessions the significance of the
implementation technology for SOA has been has been down
played in favour of the importance of understanding and
improving the business process. However, the implementation
of a system based upon SOA must use technology that can
reflect the characteristics of SOA e.g. loose service coupling, etc.
Poor implementation will defeat the key SOA system properties
such as flexibility i.e. the ability to create new business processes
by novel reuse of established services. In Session 1 we briefly
discussed the 2008 Gartner Technology Hype Cycle in which
the use of basic Web Services was identified as established
practice. In this Session we are going to take a closer look at the
technology used in basic Web Services and discuss how it can be
used to support SOA. We’ll also look at the new developments
in Web Services that are needed to be able to realise many of the
functional characteristics required in SOA-based systems.

Within the context of this series on SOA there are three learning
objectives for this, Session 6.

The first is to explain what implementation technologies should
be adopted in the short and mid-term. The short term is assumed
to be 1-2 years whereas the mid-term is the next 2-5 years.
Given the pace of technology development and the inherent
uncertainty in predicting technology changes there is little
benefit in thinking beyond five years. Indeed, for most of us,
any return on investment must be achieved within the short term

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

6 Digital 20/20

and so the relevance of long term technology developments are
heavily coloured by short term experiences. Fortunately, new
and significantly different technologies are usually accompanied
by products that enable controlled migration from the old to
the new solutions. We live in a World of rapidly changing
technology and the marketplace has recognised that supporting
change is essential for survival and long-term customer loyalty.

The second is to explain the issues and concerns to be
considered when looking to adopt Web Service solutions. When
the first Web Services solutions were being deployed there were
few alternative technologies to consider but the tools for these
technologies were primitive. For example, in Visual Studio
(from Microsoft) the Web Services code generation tools were
additional downloads and not part of the core distribution. Also,
there were, and still are, problems when ensuring interoperability
between different platforms and in particular the .NET and J2EE
Worlds. These issues are compounded by the fact that we now
have different versions for many of these technologies and so
there are significant compatibility and interoperability issues
to be addressed, particularly in enterprise-wide deployments.
Throughout this session these issues of compatibility and
interoperability will be identified and the recommended best
practices to resolve them will be suggested.

The third is to explain how technical interoperability must
be addressed to support innovation. Recall that one of the
objectives of SOA is to enable a plug-and-play approach for
services based upon the reuse and combination of services. At

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

7Digital 20/20

a technical level interoperability is essential. Interoperability
means that two systems can exchange the required information
without new implementation work irrespective of which
platforms are used to support the systems. This means that the
systems must use the appropriate service capabilities defined
in terms of both the interface (or application programming
interface) and the protocol (or the Web Service). Interoperability
must be addressed at many different levels. The semantics of
the data in systems must be compatible otherwise syntactic
interoperability becomes irrelevant. For example, if two systems
use the concept of a Group differently, even though they use the
same name, then exchanging meaningful data becomes almost
impossible. However, once interoperability for each service has
been established then new business processes can be created by
innovative combination of those services.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

8 Digital 20/20

2.	 Core Web Technologies

The are the minimal set needed to provide service-oriented
computing. The core defines the mechanism for passing
messages between a client (service consumer) and a service
(service provider), and the way to describe services (the
operations/messages they support). Over time two alternative
approaches have been developed and these now have their
own advocate and adoption communities. In both cases the
Extensible Mark-up Language, more commonly referred to as
XML, is the preferred data representation format and HTTP is
used as the underlying Internet protocol: remember that this is
all about extending the way traditional Web servers operate.
The two communities then split into the SOAP and REST
communities. The Representational State Transfer (REST)
community abhors the use of SOAP, and thus the related
specifications, claiming it is overly complex and changes the
nature of true Web-based interactions. It is the SOAP approach
that is usually assumed when the term Web Services is applied.

Figure 1 shows the key technology components of the SOAP and
REST approaches to Web Services.

XML Schema [XML, 04] is one of the XML-based languages
used to describe the structure, semantics and constraints of
XML documents. Most Web Services specifications are defined
by languages and documents expressed in XML Schema. The
advantage of XML over HyperText Mark-up Language (HTML)
is that user-defined document formats are possible using XML.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

9Digital 20/20

Figure 1 Core technologies for web services.

An XML Schema Definition (XSD) file is created and this is
used to validate the XML instance documents. These XML
instance documents can then be computer-processed with
each structure in the XSD subject to the relevant processing.
Another difference between XML and HTML is that XML has
no intrinsic presentation information and so the presentation of
XML data can be determined by the processing context and is
not fixed at the time of authoring.

For Web Services the data messaging uses SOAP (originally an
acronym for Simple Object Access Protocol but this usage has
lapsed because it is not simple nor an access protocol). SOAP is
a protocol for the exchange of messages described in XML over
a distributed network e.g. the Internet. The SOAP specification
[SOAP, 00] defines: (1) the XML format for messages; (2) the

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

10 Digital 20/20

rules that define how to process messages, and (3) a mechanism
for defining how to transport messages. SOAP is most
commonly used in a request-response messaging pattern e.g.
remote procedure call, with messages transported over the HTTP
protocol. Several versions of SOAP are deployed but SOAPv1.1
has widest adoption.

The Web Services Description Language (WSDL) is used
to describe Web Services in terms of the message exchange
patterns. A WSDL service description defines the operations,
messages and end points (access points) for the service. Abstract
descriptions are bound to actual network protocols and message
formats. WSDL is most commonly used to describe document-
oriented operations (with document definitions defined in
XML Schema and the WSDL files themselves are instances of
XML), communicated in SOAP messages over HTTP transport.
WSDLv1.1 [WSDL, 01] is the most commonly used version
with WSDLv2.0 [WSDL, 07] in early deployment.

For dynamically configured systems it is essential to be able
to find a service. The Universal Description, Discovery and
Integration (UDDI) specifications define how to establish an
(XML) Internet registry of business service listings. UDDI
describes the structure of a UDDI registry and the Web Service
interface to the registry. UDDI data models are represented in
XML and UDDI registries expose service interfaces defined in
WSDL, accessible via SOAP web service invocations. UDDI
is a complex specification to implement and unfortunately it
has very limited adoption. Alternative approaches, such as

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

11Digital 20/20

Microsoft’s WS-Discovery are under development.

The alternative RESTful approach uses the core technologies
of XML, HTTP and Uniform Resource Identifiers (URIs).
Components and resources are identified through URI labels
such that the web infrastructure can map a logical name to
an actual hardware endpoint on the Internet that is the target
for messages and where processing is undertaken. While this
approach to services is technically viable, widely deployed
(typically in providing data to browser-based clients), usually
the basis for Web 2.0 compositions (mashups), and sometimes
presented as sufficient for building Internet applications (with
the inclusion of underlying secure transport protocols), it does
not fully correspond to SOA.

REST [Fielding, 00] is formally defined as a collection of
network architecture principles that can be bound to any
collection of appropriate technologies. More commonly, REST
(or RESTful) implies the use of the REST principles combined
with basic Web protocols and standards. While REST shares
the same technology bindings as Plain Old XML (POX),
RESTful systems and their resources, component services and
intermediaries impose additional architectural constraints to
formally conform to REST. POX-based binding that do not
impose these constraints are often denoted REST-like. However,
in practice, the REST, RESTful, REST-like and POX labels are
often used interchangeably.

The Web Application Description Language (WADL) provides
an example of formal machine-processable representation

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

12 Digital 20/20

of POX-based and RESTful web services. WADL [WADL,
06] aids in automatic code generation for service interfaces.
WADL provides mechanisms to map resources to their XML
representations (including XSDs) and data/MIME types, and to
map requests and associated errors to their corresponding HTTP
request and response codes. WADL is to REST what WSDL is
to Web Services.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

13Digital 20/20

3.	 SOAP Messages

A SOAP message has as a structure similar to a letter sent
using the traditional postal system. The main difference is
that a SOAP message is written in XML. The message itself
is contained in the SOAP Envelop, as shown in Figure 2. It
is the envelop that is carried between systems using HTTP, or
one of several other transport protocols. Inside the envelop
are the SOAP Header and the SOAP Body. The SOAP Body
contains the actual message itself and remember that this must
be in the form of valid XML. The SOAP Header is used to
carry important contextual information about the message itself.
For example, a message from a service provider could contain
information about the status of the requested transaction. More
significantly, the Header can contain any number of Header
Blocks. Other Web Services specifications define their own
Header Blocks and these are used to extend the functionality of
SOAP messages. For example, the Web Services specification
WS-Addressing is used to provide more control over how
instances of services are identified at an end-point and this
information is placed in a SOAP Header Block.

The information in a SOAP Body can be used to support Remote
Procedure Call (RPC) or Document based payloads. The SOAP
specification was originally designed to replace proprietary RPC
protocols by allowing calls between systems to exchange XML
documents. In hindsight SOAP is a somewhat heavy-approach
to RPC and so Document payloads are more commonly used.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

14 Digital 20/20

Figure 2 SOAP messages.

This reflects SOAP’s bias towards larger payloads, coarser
interface operations and reduced message transmission volumes
between services. A SOAP Body can also contain Fault Codes
that can be used to denote system exception conditions. There is
a natural tendency to think of SOAP as an end-to-end protocol;
however, SOAP messages can be routed across intermediate
SOAP nodes and so a fault could occur at any intermediate node
as well as an endpoint.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

15Digital 20/20

Two versions of SOAP, 1.1 [SOAP, 00] and 1.2 [SOAP, 07] are
commonly deployed. Many of the differences between these two
versions are small and result in subtle changes and so beyond
this discussion. Those changes of a more substantial nature in
SOAP v1.2 are:

•	 Additional elements following the SOAP ‘Body’ element are
forbidden;

•	 New fault codes with new fault code extension syntax is
added;

•	 The processing of incoming messages at a node is defined;

•	 Semantics for dealing with messages from different versions
of SOAP are added to ensure backwards compatibility;

•	 SOAP 1.1 defines a single binding to HTTP whereas SOAP
1.2 defines an abstract binding framework. SOAP 1.2 also
defines a concrete binding to HTTP and a non-normative
email binding.

One of the problems with SOAP messages is that they cannot
be used to carry validated non-XML information. Other
specifications have been developed to remove this limitation
but again there is more than one possible solution and this has
caused interoperability issues.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

16 Digital 20/20

4.	 Web Service Description

Web Services are described using the Web Services Description
Language (WSDL). A WSDL description is expressed in
XML in a WSDL file. A WSDL document defines services as
collections of endpoints (WSDLv2.0), or ports (WSDLv1.1). In
WSDL, the abstract definition of endpoints/ports and messages
is separated from their concrete network deployment or data
format bindings. This allows the reuse of abstract definitions:
messages, which are abstract descriptions of the data being
exchanged; interfaces (WSDLv2.) port types (WSDLv1.1) that
are abstract collections of operations. The concrete protocol and
data format specifications for a particular port type constitute a
reusable binding. An endpoint or port is defined by associating a
network address with a reusable binding and a collection of ports
defines a service.

A WSDL document, as shown in Figure 3, uses the following
elements in the definition of network services:

•	 Types – a container for data type definitions using some type
system (XSD is widely used but any form of XML-based data
format can be used e.g. RDF);

•	 Message – an abstract, typed definition of the data being
communicated. In general there are many parts to a message
and messages are either sent to a service provider (in) or sent
from a service provider (out);

•	 Operation – an abstract description of an action supported

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

17Digital 20/20

Figure 3 The usage of WSDL.

by the service. In general there are many operations each
associated with one or two messages. These operations
define the external functionality exposed by a service;

•	 Port Type or Interface (WSDv2.0) – an abstract set of
operations supported by one or more endpoints. There may
be more than one Port Type defined and each can have any
number of operations;

•	 Binding – a concrete protocol and data format specification
for a particular port type. There is a separate binding for
every concrete protocol that is available. For example SOAP

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

18 Digital 20/20

is one such concrete protocol;

•	 Port or Endpoint (WSDv2.0) – a single endpoint defined as a
combination of a binding and a network address. More than
one port or endpoint may be defined for each service;

•	 Service – a collection of related endpoints. More than one
service can be described in the WSDL file.

A WSDL file can contain the definition of more than one
service and each service can have several ports to which any
combination of operations can be mapped. A WSDL description
can be composed of one of more physical files. There are
four categories by which the WSDL file can be realised using
physical files (we’ll assume that the data is formatted using
XSDs):

•	 Single combined WSDL/XSD file – this is the recommended
approach because many code generation tools cannot handle
the split file combinations;

•	 Separate WSDL and XSD file – the type descriptions are
contained in an external XSD file;

•	 Multiple WSDL and single XSD file – the WSDL file is split
into its abstract parts and the service specific parts. The latter
contains the mapping to the specific binding technology e.g.
SOAP;

•	 Multiple WSDL and multiple XSD files.

An important feature of WSDL is that different message

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

19Digital 20/20

exchange patterns can be defined. In WSDLv1.1 four message
patterns are permitted:

•	 One way – a single message (SOAP Request) to the service
provider;

•	 Notification – a single message (SOAP Request) from the
service provider;

•	 Solicit Response – a single message (SOAP Request) from
the service provider followed by a single response back (a
SOAP Response) to the service provider from the service
consumer;

•	 Request-Response – a single message (SOAP Request) to the
service provider with a single response (SOAP Response)
message returned to the service consumer.

In WSDLv2.0 eight message patterns are supported. These
new patterns include support for robust and optional message
exchanges.

Creating your service descriptions in WSDL is essential. This
allows you to use code generation tools to do most of the work
of implementing the services. It is also the standardised way of
publishing the Web Services interface to your service.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

20 Digital 20/20

5.	 WS-I Organisation

The Web Services Interoperability Organization (WS-I) is an
open industry consortium chartered to establish Best Practices
for Web Services interoperability, for selected groups of Web
Services standards, across platforms, operating systems and
programming languages. WS-I comprises a diverse community
of Web Services leaders from a wide range of companies
and standards development organizations; members include
Accenture, Ford, Fujitsu, Hewlett-Packard, IBM, Intel,
Microsoft, NEC, Oracle, SAP, Toshiba. The point for listing
those members is to show that this is a serious organization with
broad industrial support to ensure that WS-I produces useful
material that is readily adopted.

WS-I committees and working groups create Profiles and
supporting Testing Tools based on best practices for selected
sets of Web Services standards. The Profiles and Testing Tools
are available for use by the Web Services community to aid in
developing and deploying interoperable Web Services. Further
information on WS-I is available at: http://www.ws-i.org.

So, what does WS-I produce that is useful to the rest of us. The
primary deliverables are Profiles that provide implementation
guidelines for how related Web Services specifications should
be used together to achieve interoperability. To date, WS-I has
finalised the Basic Profile, Attachments Profile and Simple
SOAP Binding Profile. Work on a Basic Security Profile is
currently underway along with revisions of the Basic Profile.

http://www.ws-i.org

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

21Digital 20/20

Figure 4 TheWS-I Basic Profile.

So, what is a Profile and why is it useful? A Profile is a
refinement of one or more standards to meet the needs
of a specific community; usually the aim is to improve
interoperability. Therefore, a Profile should be defined by the
community itself. But why is a Profile needed, shouldn’t the
standards be sufficient themselves? Most technology standards
contain optional features and do not impose a best practice.
Instead the standards consist of many forms of compromise and
facilitate practice. Also, a Profile will, in general, cover more
than one standard and so will describe how the standards should

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

22 Digital 20/20

be combined in the most effective way. So, a Profile is used to
agree BEST PRACTICE for the community creating it.

The core deliverable from WS-I is the Basic Profile. Version
1.1 (second edition), the latest version of the WS-I Basic Profile
was released in April 2006 [WSI, 06]. Figure 4 is a schematic
representation of the core standards from which this profile is
derived. This recommends the use of SOAPv1.1 messaging,
over HTTPv1.1 to exchange XML data for Web Services
described using WSDLv1.1 with the Universal Description
Discovery and Integration (UDDI) v2.0 used for service
publication and discovery. Strictly speaking, the detailed
conformance statements for the SOAP messaging are contained
in an accompanying Profile called the WS-I Simple SOAP
Binding Profile v1.0. The combination of the Basic Profile
v1.1 and the Simple SOAP Binding Profile v1.0 has the same
coverage as the earlier version, 1.0, WS-I Basic Profile.

One of the characteristics of the Basic Profile is that it makes
use of well-established versions of the core technologies. So
SOAPv1.1 is used as opposed to SOAPv1.2 and WSDLv1.1 is
used as opposed to WSDLv2.0. In both cases, the tools available
to developers for the older versions are more mature and reliable
making it easier to establish guaranteed interoperability; the
word guaranteed is very important. A set of test tools are also
available, supplied as a flavour of open source, and these can be
used to inspect the SOAP messages being exchanged to make
sure that they conform to the Basic Profile.

In 2008, ISO/IEC (the international standards organization)

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

23Digital 20/20

released the WS-I Basic Profile v1.1 and the accompanying
WS-I Simple SOAP Binding Profile v1.0 as draft standards;
this provides further credibility to work of the WS-I. WS-I is
currently working on versions 1.2 and 2.0 of the Basic Profile.
Version 1.2 adds more Web Service standards to the Basic
Profile such as WS-Addressing and Message Transmission
Optimization Mechanism (MTOM) to addresses asynchronous
communications. Version 2.0 replaces the use of SOAPv1.1
with SOAPv1.2, adds support for MTOM and the XML-binary
Optimised Packaging (XOP) to replace the use of SOAP with
Attachments. Draft releases of version 1.2 and 2.0 are already
available for review.

Whereas there are some very real advantages in adopting
the WS-I profiles, further refinement of the profile can be
undertaken. For example, UDDI has very little adoption and
SOAP with Attachments (this is used to send non-XML based
data with the SOAP messages and was the subject of its own
WS-I profile) is being replaced by MTOM. However, I stress
that starting with the WS-I Profiles is established best practice.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

24 Digital 20/20

6.	 Deploying Web Services

Now that the basic set of Web Services technologies have been
described we need to address how these are used to implement
and deploy real services. Like all software engineering
projects the first step is to agree the functional requirements of
the service. The service needs to be described in terms of its
external interface (this is used to generate the corresponding
interfaces and protocols) and the internal functional operation.
The functional description includes defining the data structures
and the functional behaviour. The internal data structures do
not need to be expressed in the same form as the data structures
for the interface. For example, a Web Service based interface
will use XML for the expression of the data structures whereas
many internal data structures will be realised using a database.
Remember the interface to the service is used to separate
the local realisation of the service from its interoperability
implementation.

We’ll assume that an organization knows how define the
functionality for a software system using an appropriate
methodology. Instead we will focus on the interface and
interoperability development. Once the interface definition
has been created (some organizations call the purely abstract
functional definition the Interface its Information Model) its
technology realisation, or Binding, is defined. In the case of
Web Services the binding is expressed in WSDL. It is important
that an organisation creates consistent WSDL bindings that
ensure interoperability. The best way to achieve this is to use

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

25Digital 20/20

established best practice recommendations such as the profiles
from WS-I. Further profiling can be undertaken to remove those
features of WS-I that are irrelevant e.g. the use of UDDI, etc. It
is also important to document the WSDL files themselves i.e. use
the WSDL documentation commenting features. Many WSDL
authoring tools also provide documentation features that will
create a HTML description of the WSDL file.

If your Web Service uses HTTP (recall that SOAP can use
SMTP, FTP, etc.) then you will need a Web Server to host your
service. The Web Server processes the HTTP calls and passes
the SOAP requests onto the service implementation. Any
corresponding SOAP response is returned using HTTP.

The WSDL contains the description of how to interact with
the service. If the service is externally visible, then the WSDL
file(s) should be made available. A service repository should
be maintained in which all of the WSDL and related files can
be stored. In Enterprise systems it is recommended that some
repository discovery and search protocol be supported, for
example UDDI. Once the WSDL files are available externally,
it is possible for other organisations to build service clients.
An example of this approach is described in the Session on
three cases studies and the Amazon Web Services. If WSDL
is not used some other documentation format must be used to
supply the description of the service. The advantage of WSDL
is that most integration development environments now provide
code generation tools that work from a WSDL file and so this
simplifies access to your service.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

26 Digital 20/20

There is one important note of caution. By definition, a WSDL
file defines a path through your firewall to the server hosting
the service. It is important that external facing services are
isolated from internal-only services and systems. Your security
architecture must take into account any support of Web Services.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

27Digital 20/20

7.	 WS-* Standards

While the core Web Service specifications are sufficient
to achieve basic service interoperability, they leave many
details unspecified; business partners must agree on these
implementation details. Furthermore, the core specifications are
specific to only limited technologies. The broader collection of
Web Services specifications, denoted WS-* (pronounced WS
Star), define a more comprehensive service architecture and
further detail solutions to different interoperability problems.
They also uncouple the different behaviours and representations,
providing a more comprehensive model for abstracting
capabilities from underlying representations. Therefore many of
the WS-* specifications are designed to be combined with other
specifications to define a complete Web Services or SOA model.
Given the range of WS-* specifications and their ongoing
development, profiles, such as WS-I, provide guidelines for
interoperability across the collection of WS-* specifications.

The WS-* standards of relevance, listed in Figure 5, are:

•	 MTOM describes features for optimizing the (wire)
transport of SOAPv1.2 messages. It defines how parts of
the XML message i.e. binary data, may be encoded while
still permitting XML processing of the message. It uses
XOP to define a processing model for encoding. MTOM
also provides an “include” feature designed to enable the
mechanism to efficiently transport binary objects and replace
other models, such as SOAP with Attachments and MIME for

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

28 Digital 20/20

Figure 5 Key WS-* standards.

Web Service. Both MTOM and XOP are parts of the SOAP
family of specifications;

•	 Web Services Addressing (WS-Addressing) [WSA, 06] is
an XML-based language used to describe message transport
for Web Services. Rather than rely on the properties of
the underlying transport protocol in a service call, WS-
Addressing provides a standardized way, which is transport
protocol independent, to include message addressing within
the XML message itself e.g. include HTTP specifics in the
SOAP messages. The addressing information includes the
service end point and message parameters. In addition to the
transport neutral model, the specification includes bindings to
SOAP and WSDL;

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

29Digital 20/20

•	 Web Services Policy (WS-Policy) is an XML-based language
used to describe the policies that apply to a Web Service.
Policies define characteristics such as authentication scheme,
security, encryption, transport protocol, privacy, quality of
service business rules, etc. Policies are defined independent
of application and scope, via the Policy Framework, and are
“attached” to service end points and other elements such as
WSDL service definitions and UDDI service descriptions;

•	 The Business Process Execution Language (BPEL) is an
XML-based language used to describe executable processes
formed through the assembly and orchestrated interaction
of multiple Web Services supporting business processes.
BPEL provides a programming language to describe long-
running transactions and sequences across a collection of
Web Services (defined in WSDL, interacting through SOAP
messages). Business processes defined in BPEL may be
executed under a BPEL processing engine, invoking and
controlling the constituent services;

•	 Web Services Security (WS-Security) describes a security
model for use in a Web Services environment. The core WS-
Security specification defines extensions to SOAP to transmit
security credentials and to ensure end point-to-end point
message confidentiality and integrity to secure web services.
The core specification is independent of security approach
and has been profiled for use with PKI (X.509), SAML,
Kerberos, username/password pairs and MPEG21 rights
expressions.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

30 Digital 20/20

8.	 Web Services Stack

The current (and evolving) Web Services model of SOA is
defined using additional interoperability standards, developed
primarily by the World Wide Web Consortium (W3C) and
Organization for the Advancement of Structured Information
Standards (OASIS) and denoted as WS-*. These WS-*
standards are combined and layered, providing the Web Services
stack. In the WS-* stack, standards provide abstraction layers
i.e. the standards are defined using more basic standards and
groups of related standards are classified by their function.
There are several manifestations of the Web Services stack
depending on what characteristics are to be stressed. As shown
in Figure 6, one perspective is:

•	 Internet Core Communications – WS-*, as with the web
architecture, uses core Internet standards as its basis (URI
naming, HTTP transport, MIME);

•	 Basic Technologies – XML is the core representational
language and is used to define all vocabularies including
those that define the data models for domain application
data. Core domain-independent XML vocabularies e.g. XML
Schema, XPath, are used throughout the WS-* collection of
standards to define the other parts of WS-*;

•	 Messaging – WS-* defines how to describe and send
messages between services to support communications,
primarily through SOAP and other messaging standards.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

31Digital 20/20

Figure 6 Web Services stack.

The relevant standards are MTOM, WS-Atomic Transaction
(to describe the coordination and transactional processing
of distributed Web Services), WS-Reliable Messaging (to
provide SOAP level guaranteed delivery message patterns),
WS-Addressing and WS-Resource Framework (defines
how stateful resources are to be supported – Web Services
normally being stateless interactions);

•	 Descriptions – this is the usage of WSDL to describe the
services available;

•	 Business Processes – WS-* business process standards

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

32 Digital 20/20

describe how to model and manage the services within a
specific business process or across the business enterprise so
that automated systems can coordinate the operation of the
various services to meet the business requirements. These
standards include the discovery of services (UDDI and WS-
Discovery) and the combination of services using BPEL and
WS-Coordination;

•	 Management – service management and quality of service
characteristics are also described through machine-readable
XML vocabularies. These definitions can be combined with
metadata (WS-Metadata) and policy constraints (WS-Policy)
to define services, interfaces, management, and their bindings
to network end points in deployments;

•	 Security – a key set of WS-* are those that address security.
WS-Security and WS-Trust are the two relevant standards
but these need to be profiled to fit the broader security
architecture for the systems, within which the service will
operate, as a whole.

It is important to stress that this is very early days for such a
stack. There is no deployment implementation experience for
all but a few of these standards. Also, we have no understanding
of the interoperability problems that will be encountered once
deployment begins. Therefore, only the bravest of organizations
should consider deployment of such a stack.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

33Digital 20/20

9.	 APIs, Protocols & Interfaces

Flexible service implementation requires the definition of a clear
interface and messaging protocol. Full interoperability requires
agreement on both the interface and the protocol. A simple,
but important, view is that the interface is a reflection of the
business application facing interpretation of the service whereas
the protocol is the technical infrastructure facing interpretation
of the service. A Service Adapter provides the glue between the
Interface and the Protocol. This separation provides flexibility.
This flexibility is required because the implementation of a
service will have to change if the environment in which it must
operate changes. For example, one protocol may be ideal to
provide a fast response whereas another may be better suited to
provide reliable communications over an error-prone network.
The costs of implementation are considerably increased if every
change in the protocol requires the interface to be changed
and vice-versa. So, the Interface hides the details of the
Protocol from the application and the Protocol ensures that the
application-specific functionality is supported using a common
network infrastructure. The Service Adapter is the means by
which the Interface or Protocol can be changed independently
of each other; it realises the mapping between the Interface
and the Protocol and provides all of the platform-specific
implementation details e.g. calls to the host operating system,
exception handling, etc.

Established best practice for creating applications is to reuse

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

34 Digital 20/20

components as widely as possible. Such reuse is only possible
when the component has a clearly defined interface – termed its
Application Programming Interface (API). The same approach
is used for services. An application can make use of one or
more services and the application is responsible for orchestrating
the interaction of the services. A closer consideration of the
interface to a service reveals two different roles that have to be
supported:

•	 Data – the normal role of the API. This consists of the set of
operation calls that are used to access the functionality of the
service;

•	 Management – the calls that are used to manage the interface
as a whole. This includes the configuration of the data
interface and may involve dynamic binding of the description
of the interface to the appropriate implementation technology;

From the perspective of a protocol for a service the main issue is
to define the set of messages and the corresponding messaging
sequence. Three standard generic communications messaging
models must be considered:

•	 Fire-and-forget – this is when a message is sent and no form
of response or confirmation is to be returned (this also known
as datagram or send-and-pray). For Web Services this is one
of the native message patterns supported by WSDL;

•	 Synchronous – this is a request/response message exchange
in which the service consumer is blocked until the response
message from the service provider is received. Again, for

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

35Digital 20/20

Web Services this is one of the native message patterns
supported by WSDL;

•	 Asynchronous – this is a request/acknowledgement and
response/acknowledgement message choreography during
which the service consumer is unblocked i.e. more than one
request message can be issued before a response message is
received. This is handled by creating two WSDL definitions
and using BPEL to establish the choreography of the two sets
of message patterns.

Further messaging models can also be constructed, for example:

•	 Polled – this is a request/acknowledgement and polled/
acknowledgement message choreography during which the
initiator is unblocked i.e. more than one request message can
be issued before a response message is received. The server
only returns the response message when the poll message has
been received;

•	 Publish & Subscribe – the server publishes, or announces, its
service availability and the service consumers subscribe.

For both of these messaging models, multiple WSDL definitions
must be created and BPEL used to establish the choreography of
the message patterns.

So, as shown in Figure 7, technical interoperability is composed
of three parts, any or all of which can be changed according
to implementation needs. A ‘Service Adapter’ is used to link
the ‘On-the-wire Interface’ and the ‘Interface’. The aim is

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

36 Digital 20/20

to provide interoperability between the ‘Service Provider
Application’ and the ‘Service Consumer Application’ such
that these implementations can be changed independently. It is
stressed that interoperability requires agreement for both the
‘On-the-wire Interface’ and the ‘Interface’; the ‘On-the-wire
Interface’ is used to encapsulate the ‘On-the-wire Protocol’
that for a Web Services implementation would be the SOAP
messaging. A further feature of Web Services interoperability
is that the service provider and service consumer platforms are
not required to use the same implementation technology. For
example, the service consumer could be implemented using a

Figure 7 Interface, protocol and service adapter relationships.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

37Digital 20/20

C#/.NET combination whereas the service provider could be a
Java-based server application, or vice-versa.

So, what does this mean? APIs, interfaces and protocols are
all essential. Any service implementation must address each of
these otherwise it will not be able to realise the intention of the
overarching SOA requirements.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

38 Digital 20/20

10.	Interoperability & Innovation

When a typical system, application or tool is turned into its
service-based equivalent there are technical and commercial
opportunities that should be exploited. The technical
opportunities are based on the interoperability capabilities.
These capabilities are contained in the set of operations and the
corresponding data objects. This means that:

•	 The data itself should be defined in a language that is
independent of the implementation platform. For this reason,
XML is ideal. XML is the native language for the Web and
separates presentation information from the content itself;

•	 The operations for the service define how the service can
be used by other services. Access to these operations can
be limited to internal systems (i.e. inside of the corporate
firewall) or can be made visible externally e.g. to act as a
SAAS solution. External access is best supported through the
use of WSDL to describe the service;

•	 Different systems can now use the service (internally and
externally) to undertake the required business processes.
The ‘clean’ interface means that non-externally visible or
behavioural changes to the service have no implementation
consequences on other services. This is a very powerful
benefit for maintenance and support activities.

While the internal technical advantages could be sufficient
justification for undertaking SOA product development the

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

39Digital 20/20

commercial opportunities should be considered as part of the
strategic decision-making. The commercial exploitation is based
on the innovation opportunities that become available:

•	 If the service descriptions are published (either as an open
source or proprietary API) then third party products can
integrate with this service. This has the advantages that the
costs of third party integration are borne externally while
providing new marketing opportunities. Such third party
integration could be undertaken by system integrators,
suppliers of high products/systems e.g. Oracle and SAP, and
small specialist products developers;

•	 If the service contains complex data descriptions then
this data specification could be released as a candidate de
facto standard. In many cases, de facto standardisation is
the first step in de jure standardisation. Advocacy of such
standardisation can place the organisation as a ‘thought
leader’ for its market sector while also helping to establish its
technology as a ‘leading edge’;

•	 If an original product is split into its constituent services
components then new favours of the same product can be
created by small changes in the ways in which these services
are combined. This can be used to provide a ‘sell up’
capability for a range of products. Alternatively new services
could be added to create completely new product lines.
These new products could be aimed at new market sectors
thereby allowing commercial growth into a new sector from a
position of strength in an established market.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

40 Digital 20/20

11.	Combining Services

While the “divide and conquer” approach for identifying
separate services is an important technique for producing clear
unambiguous services, real business processes will, in general,
require the combination of several services. In the case of
services, their combination is based upon defining the order in
which the relevant operations for each service must be invoked.
A related problem is defining how error conditions must be
handled should some operation fail to provide the required
information.

There are several standards under development for orchestrating/
choreographing Web Services but BPEL is the most commonly
used approach; this is because BPEL has been available in
standardised form for several years (version 2.0 was released in
2007 [BPEL, 07]). BPEL is an XML-based language used to
describe executable processes formed through the assembly and
orchestrated interaction of multiple (Web) services supporting
business processes. BPEL provides a programming language
to describe long-running transactions and sequences across
a collection of web services (defined in WSDL, interacting
through SOAP messages). Business processes defined in BPEL
may be executed under a BPEL processing engine, invoking and
controlling the constituent services. Open source BPEL engines
are available e.g. from Microsoft.

In broader terms, BPEL can also be used to define general
Workflow. For example, once a set of services has be deployed,

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

41Digital 20/20

different business processes can be supported by defining the
appropriate workflow in BPEL. New processes can be defined
by creating new BPEL descriptions and established ones
amended by changing their BPEL files. This provides a very
powerful mechanism to create flexible working practices in
which deployment is based upon a small BPEL file distributions
executed by a BPEL engine as opposed to requiring new service
implementation. BPEL can also be used to create more complex
message patterns for a service. For example, an asynchronous
service can be supported using two synchronous message
patterns that are linked using a BPEL description (in turn this
means that simple WSDLv1.1 can be used to describe more
complex message patterns).

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

42 Digital 20/20

12.	Enterprise Service Bus

The Enterprise Service Bus (ESB) provides a new way to build
and deploy enterprise service-oriented architectures. ESB
provides an effective approach to solving common problems
such as service orchestration, application data synchronization,
and business activity monitoring. In its most basic form, an ESB
offers the following key features:

•	 Web Services – support for SOAP, WSDL and UDDI, as
well as standards such as WS-Reliable Messaging and WS-
Security;

•	 Messaging – asynchronous store-and-forward delivery with
multiple qualities of service;

•	 Data transformation – XML to XML;

•	 Content-based routing – publish and subscribe routing across
multiple types of sources and destinations;

•	 Platform-neutral – connect to any technology in the enterprise
e.g. Java, .Net, mainframes, and databases.

More advanced ESBs typically offer a number of additional
value-added features, including:

•	 Adapters to enable connectivity into packaged and custom
enterprise applications;

•	 Distributed query engine, for easily enabling the creation of
data services out of heterogeneous data sources;

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

43Digital 20/20

Figure 8 Internal structure of an Enterprise Service Bus.

•	 Service orchestration engine, for both long-running (stateful)
and short-running (stateless) processes;

•	 Application development tools, to enable the rapid creation of
user-facing applications;

•	 Presentation services, to enable the creation of personalized
portals that aggregate services from multiple sources.

ESBs are the next step for middleware infrastructure technology.
Previously, developers have used a variety of technologies to

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

44 Digital 20/20

support program-to-program communication, such as object
request brokers (ORBs), message-oriented middleware (MOM),
remote procedure calls (RPC), and most recently, point-to-point
Web Services. These technologies are frequently grouped under
the “middleware” category. ESBs are attractive for enterprise
solutions because they combine features from previous
technologies with new services, such as message validation,
transformation, content-based routing, security, load balancing,
etc. ESBs use industry standards for most of the services they
provide, thus facilitating cross-platform interoperability and
becoming the logical choice for companies looking to implement
SOA.

As shown in Figure 8, the architecture of an ESB is centred
on a bus. The bus provides message delivery services, based
on standards such as SOAP, HTTP and Java Messaging
Service (JMS), and is typically designed for high-throughput,
guaranteed message delivery to a variety of service producers
and consumers. Most ESBs support XML as a native data type,
while also offering alternatives for handling other data types.
The types of components that can be connected to an ESB:

•	 Routing and transformation – a high performance message
broker is a core component of an ESB. It enables content-
based routing of messages and data transformation, using
standards such as XQuery and XSLT.

•	 Adapters, typically built to the Java Connector Architecture
(JCA) specification, enable integration with a wide variety of
enterprise applications;

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

45Digital 20/20

•	 Distributed query engine, which is normally based on
XQuery or SQL, enables the creation of data services to
abstract the complexity of underlying data sources;

•	 Custom applications, based on standards like J2EE, which
can plug into the ESB to provide a user interface to enterprise
services;

•	 Service orchestration (or BPEL) engine, which can sequence
the execution of services and keep state for long-running
processes.

Although many people correlate an ESB with integration
and mediation, its primary function is actually that of service
platform, or more specifically the “virtualization of service
agents.” A service agent is the application code that implements
service functionality, and virtualization of service agents is the
true breakthrough for ESB. An ESB provides a service container
that virtualizes a service and insulates it from its protocols,
invocation methods, MEPs, quality of service requirements, and
many other infrastructure concerns.

Infrastructure refers to nonfunctional aspects of a service,
including its protocols, invocation methods, etc. Middleware
technologies evolve at a different rate from application
functionality, and therefore it is desirable to separate these
concerns. In the past the Common Object Request Broker
Architecture (CORBA) was a common implementation
technology but very few people would consider adopting it
today. Instead Web Services would be used. ESB allows

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

46 Digital 20/20

a developer to build a service, using service agents, that is
completely independent from the technology that will be used
to expose its capabilities. The service agent running in the
platform’s agent container is completely separated from the
technology used to expose its capabilities to the outside world.
The message pipeline processor and policy enforcer can expose
the service through any number of communication channels,
supporting a wide assortment of client systems, including
Rich Internet Applications (RIAs) and mash-ups, rich mobile
applications (RMAs), Rich Desktop Applications (RDAs),
remote service endpoints, and others. The pipeline processor
also mediates access to the service agent by enforcing whatever
policies apply to the service, such as security, reliability, or
transformational policies.

This type of abstract component model, now found in most
ESBs, enables the kind of clean separation of concerns between
application and infrastructure. It supports the concept of an
infrastructure services model in which infrastructure capabilities
are externalized from applications and their application
platforms and modelled as services that can be applied to
service agents and service interactions via declarative policies.
The infrastructure itself becomes responsible for ensuring that
policies are properly enforced.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

47Digital 20/20

13.	Over-the-Horizon

As with all technologies, there is a very rapid development
cycle for Web Services. New standards are under development
and new versions of established standards are released every
few months. The set of technologies that need to be monitored
closely include:

•	 Full Enterprise Service Bus – ESB deployment and
interoperability is still in its infancy. Many ESB solutions
support only the messaging infrastructure. Next generation
ESB solutions will focus on full ESB service support as well
as sector-specific features. For example, a Higher Education
ESB could provide native support for e-learning and
e-research using established service interface definitions;

•	 New profiles of WS-* standards – there are many new WS-*
standards under development and refinement. Until best
practice experience as been obtained and the accompanying
best practice profiles have been created it is unlikely that
these standards will be successfully deployed in Enterprise
systems. Typically, these profiles are going to lag behind the
release of the standard by 2-3 years;

•	 More powerful RESTful implementations – the original
advantage of REST-based implementations was that they
were simple and based upon deployed technology e.g. Web
servers. SOAP requires special tools and is considered overly
complex. However, once Enterprise-oriented solutions are

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

48 Digital 20/20

required, REST is too simple. For example, there is no
security mechanism apart from HTTPS. Therefore, REST
will be combined with other ‘simple’ technologies to increase
its range of capabilities. As REST architectures grow more
complex, SOAP approaches are being simplified (through
profiling) and so the two will converge in range of functional
capability and implementation complexity;

•	 Support tools for WSDLv2.0 – code generation tools for
WSDSLv2.0 are not yet available. Early tools are now
available, such as the W3Cs WSDLv1.1 to WSDLv2.0
conversion. Mainstream support for WSDLv2.0 in the J2EE
and .NET World’s should occur in the next 12-18 months.
Some work by IBM has shown how WSDLv2.0 can be
used to describe RESTful services and work is underway to
develop corresponding code generation tools;

•	 Semantic Web – there are many difficulties in finding
information across the Web, because each relationship must
be explicitly defined. New approaches are required to allow
relationships between information to be derived from the
content itself and the way that content is represented. This is
the aim of the semantic web and its core technologies of the
Resource Description Framework Schema (RDFS), and the
Web Ontology Language (OWL). At present, there are too
few commercially robust tools for these to be mainstream but
this will change in the next few years;

•	 Web Service enabled network devices – companies such as
Cisco are working on new network devices that incorporate

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

49Digital 20/20

Web Service capability e.g. SOAP message processing,
support for service registries, etc. If the router infrastructure
includes Web Services functionality then access to the end
services is simplified and the network itself can support key
functionality e.g. WS-Security;

•	 Cloud Computing – this is the provision of dynamically
scalable and virtualised services through the Web. Cloud
computing is a combination of Software-, Platform- and
Infrastructure-as-a-Service. The Gartner ‘Hype Cycle’
released in 2008 showed that Cloud Computing was 2-5 years
away from accepted deployment and had not yet entered
the ‘Trough of Disillusionment’. Even so, Amazon already
provides Cloud Computing solutions and so now is an ideal
time to consider how such a technology can be exploited;

•	 Model Driven Architecture (MDA) – MDA and its set of
related approaches (model driven design, model driven
testing, etc.) are based upon on the principle that it is possible
to derive real solutions for system from models of the system.
In the case of a Web-based service this approach requires the
creation of a functional model of the service (there could be
more than one such model) followed by transformation of this
model (this could have several stages) into an implementation
for the target platform e.g. C# for a .NET based solution.
The aim is to make is easier to create and deploy correct
Web Services by minimising the time spent on the traditional
development, coding and testing activities.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

50 Digital 20/20

14.	In Conclusion

A lot of material has been covered in the previous pages. Do not
get overwhelmed by the complexity of the technology. When
adopting Web technologies it is important to take an incremental
approach. The starting point is the Core Web technologies.

The Core Web technologies are the minimal set needed to
provide service-oriented computing. The core defines the
mechanism for passing messages between a client (service
consumer) and a service (service provider), and the way to
describe services (the operations/messages they support). The
Core consists of the use of XML, SOAP and WSDL such that:

•	 The data is described as XML with XML Schema used to
describe the structure, semantics and constraints of XML
documents. Most Web Services specifications are defined by
languages and documents expressed in XML Schema;

•	 For Web Services the data messaging uses SOAP. SOAP is
a protocol for the exchange of messages described in XML
over a distributed network e.g. the Internet. Several versions
of SOAP are deployed but SOAPv1.1 has widest adoption;

•	 WSDL is used to describe Web Services in terms of the
message exchange patterns. A WSDL service description
defines the operations, messages and end points for the
service. WSDLv1.1 is the most commonly used version with
WSDLv2.0 in early deployment.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

51Digital 20/20

While the core Web Service specifications are sufficient
to achieve basic service interoperability, they leave many
details unspecified. Furthermore, the core specifications are
specific to only limited technologies. The broader collection
of Web Services specifications, denoted WS-*, define a more
comprehensive service architecture and further detail solutions
to different interoperability problems. They also uncouple
the different behaviours and representations, providing a
more comprehensive model for abstracting capabilities
from underlying representations. Therefore many of the
WS-* specifications are designed to be combined with other
specifications to define a complete Web Services or SOA model.

There are an almost endless number of ways in which Web
Services can be implemented. Therefore, best practice guidance
is essential. The Web Services Interoperability Organization
(WS-I) is an open industry consortium chartered to establish
Best Practices for Web Services interoperability, for selected
groups of Web Services standards, across platforms, operating
systems and programming languages.

WS-I committees and working groups create Profiles and
supporting Testing Tools based on best practices for selected
sets of Web Services standards. The Profiles and Testing Tools
are available for use by the Web Services community to aid in
developing and deploying interoperable Web Services. The
primary deliverables from WS-I are Profiles that provide
implementation guidelines for how related Web Services
specifications should be used together to achieve interoperability.

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

52 Digital 20/20

The core deliverable from WS-I is the Basic Profile. The latest
version of the WS-I Basic Profile v1.1 recommends the use of
SOAPv1.1 messaging, over HTTPv1.1 to exchange XML data
for Web Services described using WSDLv1.1 with UDDI v2.0
used for service publication and discovery.

Flexible service implementation requires the definition of a clear
interface and messaging protocol. Full interoperability requires
agreement on both the interface and the protocol. The interface
is a reflection of the business application representation of the
service whereas the protocol is the messaging interpretation
of the service. A Service Adapter provides the glue between
the Interface and the Protocol. The Interface hides the details
of the Protocol from the application and the Protocol ensures
that the application-specific functionality is supported using
a common network infrastructure. Application programming
interfaces, interfaces and protocols are essential. Any service
implementation must address each of these otherwise it will
not be able to realise the intention of the overarching SOA
requirements.

Finally, of all the material covered in the six sessions, this is
the content that is most susceptible to change. There are a lot of
relevant standards being developed and in many cases these are
undergoing significant revision as we gain more implementation
experience. Likewise, the tool-sets that make it possible to
create a Web Service solution are also being changed and
improved. Therefore, it is important to monitor developments
closely.

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

53Digital 20/20

Appendix A – Bibliography

[BPEL, 07]	 Web Services Business Process Execution
Language Version 2.0, OASIS Standard,
11th April 2007. [http://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.html].

[Fielding, 00]	 Architectural Styles and the Design of Network-
based Software Architectures, Roy Thomas
Fielding, Ph.D. Dissertation, University of
California, Irvine, 2000. http://www.ics.uci.
edu/~fielding/pubs/dissertation/top.htm.

[SOAP, 00]	 Simple Object Access Protocol (SOAP) 1.1,
W3C Note, 8th May 2000. [http://www.w3.org/
TR/2000/NOTE-SOAP-20000508/].

[SOAP, 07]	 SOAP Version 1.2 Part 0: Primer (Second
Edition), W3C Recommendation, 27th April
2007. [http://www.w3.org/TR/soap12-part0/].

[WADL, 06]	 Web Application Description Language, Marc
Hadley, SUN Microsystems, 2006. [https://wadl.
dev.java.net/wadl20061109.pdf].

[WSA, 06]	 Web Services Addressing 1.0 – Core, W3C
Recommendation, 9th May 2006. http://www.
w3.org/TR/ws-addr-core.

[WSDL, 01]	 Web Services Description Language (WSDL) 1.1,
W3C Note, 15th March 2001.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/soap12-part0
https://wadl.dev.java.net/wadl20061109.pdf
https://wadl.dev.java.net/wadl20061109.pdf
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

54 Digital 20/20

[WSDL, 07]	 Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer, W3C
Recommendation, 26th June 2007. [http://www.
w3.org/TR/wsdl20-primer].

[WSI, 06]	 Web Services Interoperability Basic Profile
Version 1.1, 2nd Edition, Eds K.Ballinger,
D.Ehnebuske, C.Ferris, M.Gudgin, C.K.Liu,
M.Nottingham and P.Yendluri, Web Services-
Interoperability Organization, April 2006.

[XML, 04]	 XML Schema Part 0: Primer, Second Edition,
W3C Recommendation, 28th October 2004.
[http://www.w3.org/TR/xmlschema-0/].

http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/xmlschema-0

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

55Digital 20/20

Appendix B – Acronyms

API	 Application Programming Interface

BPEL	 Business Process Execution Language

CORBA	 Common Object Request Broker Architecture

ESB	 Enterprise Service Bus

FTP	 File Transfer Protocol

HTML	 Hypertext Markup Language

HTTP	 Hypertext Transport Protocol

HTTPS	 Hypertext Transport Protocol (Secure)

ISO/IEC	 International Standards Organization/International
Electrotechnical Commission

J2EE	 Java 2 Enterprise Edition

JCA	 Java Connector Architecture

JMS	 Java Messaging Service

MDA	 Model Driven Architecture

MEP	 Message End Point

MIME	 Multipurpose Internet Mail Extensions

MOM	 Message Oriented Middleware	

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

56 Digital 20/20

MPEG	 Motion Picture Experts Group

MTOM	 Message Transmission Optimization Mechanism

OASIS	 Organization for the Advancement of Structured
Information Standards

ORB	 Object Resource Broker

OWL	 Web Ontology Language

PKI	 Public Key Infrastructure

POX	 Plain Old XML

RDA	 Rich Desktop Application

RDF	 Resource Description Framework

RDFS	 Resource Description Framework Schema

REST	 Representational State Transfer

RIA	 Rich Internet Application

RMA	 Rich Mobile Application

RMI	 Remote Method Invocation

RPC	 Remote Procedural Call

SAAS	 Software As A Service

SAML	 Security Assertion Markup Language

SMTP	 Simple Mail Transfer Protocol

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

57Digital 20/20

SOA	 Service Oriented Architecture

SQL	 Structured Query Language

UDDI	 Universal Description, Discovery and Integration

UK	 United Kingdom

URI	 Uniform Resource Identifier

W3C	 World Wide Web Consortium

WADL	 Web Application Description Language

WSDL	 Web Services Description Language

WS-I	 Web Services Interoperability Organisation

XML	 Extensible Markup Language

XOP	 XML-binary Optimized Packaging

XSD	 XML Schema Definition

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

58 Digital 20/20

Index

A

API 33—37, 39, 55
Application Programming Interface.

See API
Asynchronous 35

B

BPEL 29, 32, 35, 40, 41, 45, 53, 55
Business Process Execution Lan-

guage. See BPEL

C

Common Object Request Broker
Architecture. See CORBA

CORBA 45, 55
Core Web Technologies 8—12

E

Enterprise Service Bus. See ESB
ESB 42—46, 47, 55
Extensible Markup Language 57

F

Fire-and-forget 34
FTP 25, 55

H

HTML 8, 9, 25, 55
HTTP 8, 10, 11, 12, 13, 15, 25, 28,

30, 44, 55
HTTPS 48, 55
Hypertext Markup Language.

See HTML

I

Interfaces 33—37
Interoperability 4, 7, 20, 38—39,

51, 54, 57, 60
ISO/IEC 22, 55

J

J2EE 6, 45, 48, 55
Java Connector Architecture.

See JCA
Java Messaging Service. See JMS
JCA 44, 55
JMS 44, 55

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

59Digital 20/20

M

MDA 49, 55
MEP 55
Message Transmission Optimization

Mechanism. See MTOM
MIME 12, 27, 30, 55
Model Driven Architecture.

See MDA
MOM 44, 55
MTOM 23, 27, 28, 31, 56

O

OASIS 30, 53, 56
ORB 56
Organization for the Advancement

of Structured Information
Standards. See OASIS

OWL 48, 56

P

PKI 29, 56
Plain Old XML. See POX
Polled 35
POX 11, 12, 56
Protocol

FTP 25, 55
HTTP 8, 10, 11, 12, 13, 15, 25, 28, 30,

44, 55
HTTPS 48, 55

Protocols 33—37
Publish & Subscribe 35

R

RDA 56
RDF 16, 56
RDFS 48, 56
Remote Procedural Call. See RPC
Representational State Transfer.

See REST
Resource Description Framework.

See RDF
Resource Description Framework

Schema. See RDFS
REST 8, 11, 12, 47, 48, 56
RIA 56
Rich Desktop Application. See RDA
Rich Internet Application. See RIA
Rich Mobile Application. See RMA
RMA 56
RMI 56
RPC 13, 44, 56

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

60 Digital 20/20

S

SAAS 38, 56
SAML 29, 56
Semantic Web 48
Service Adapter 33—37
Service Oriented Architecture 1, 57
Simple Mail Transfer Protocol.

See SMTP
SMTP 25, 56
SOAP 4, 8, 9, 10, 13, 14, 15, 17,

18, 19, 20, 22, 23, 25, 27,
28, 29, 30, 31, 36, 40, 42,
44, 47, 48, 49, 50, 53

SOAP Messages 13—15
SOAPv1.1 10, 22, 23, 50, 52
SOAPv1.2 22, 23, 27
Software As A Service. See SAAS
SQL 45, 57
Synchronous 34

U

UDDI 10, 22, 23, 25, 29, 32, 42,
52, 57

Uniform Resource Identifier.
See URI

Universal Description, Discovery
and Integration. See UDDI

URI 11, 30, 57

W

W3C 30, 53, 54, 57
WADL 11, 12, 53, 57
Web Application Description Lan-

guage. See WADL
Web Ontology Language. See OWL
Web Services 3, 4, 5, 6, 8, 9, 10, 12,

13, 16, 19, 20, 22, 24, 25,
26, 27, 28, 29, 30, 31, 34,
35, 36, 40, 42, 44, 45, 47,
49, 50, 51, 52, 53, 54, 57

Web Services Addressing. See WS-
Addressing

Web Services Description Lan-
guage. See WSDL

Web Services Interoperability.
See WS-I

Web Services Policy. See WS-Policy
Web Services Security. See WS-

Security
Web Services Stack 30—32
World Wide Web Consortium.

See W3C
WS-Addressing 13, 23, 28, 31
WS-Atomic Transaction 31
WS-Coordination 32

dunelm
PRJ.337	 SOA Session 6: Core Technology	 Final A / June, 2009

61Digital 20/20

WS-Discovery 11, 32
WSDL 10, 12, 16, 17, 18, 19, 24,

25, 26, 28, 29, 31, 34, 35,
38, 40, 42, 50, 53, 54, 57

WSDL Document 16—19
WSDLv1.1 10, 16, 19, 22, 41, 48,

50, 52
WSDLv2.0 10, 16, 19, 22, 48, 50
WS-I 4, 20, 22, 23, 25, 27, 51, 52,

57
WS-I Organisation 20—23
WS-Policy 29, 32
WS-Reliable Messaging 31, 42
WS-Resource Framework 31
WS-Security 29, 32, 42, 49
WS-* Standards 27—29
WS-Trust 32

X

XML-binary Optimized Packaging.
See XOP

XML Schema Definition. See XSD
XOP 23, 27, 28, 57
XSD 9, 16, 18, 57

dunelm
Final A / June, 2009	 SOA Session 6: Core Technology	 PRJ.337

62 Digital 20/20

This work was funded by Digital 20/20. Further information is
available at http://www.digital2020.org.uk.

This booklet was written and produced by Colin and Christine
Smythe of Dunelm Services Ltd (http:///www.dunelm.com), at 34
Acorn Hill, Stannington, Sheffield, S6 6AW, Tel: 0114-2334009,

E-mail: colin@dunelm.com.

http://www.digital2020.org.uk
http:///www.dunelm.com
http:///www.dunelm.com

	Front Page
	Publication Information
	Executive Summary
	1.	Introduction
	2.	Core Web Technologies
	3.	SOAP Messages
	4.	Web Service Description
	5.	WS-I Organisation
	6.	Deploying Web Services
	7.	WS-* Standards
	8.	Web Services Stack
	9.	APIs, Protocols & Interfaces
	10.	Interoperability & Innovation
	11.	Combining Services
	12.	Enterprise Service Bus
	13.	Over-the-Horizon
	14.	In Conclusion
	Appendix A – Bibliography
	Appendix B – Acronyms
	Index

